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a b s t r a c t

The design of a model-free fuzzy power system stabilizer (PSS) lacks systematic stability analysis and
performance guarantees. This paper provides a step towards the design of a model-based fuzzy PSS that
guarantees not only stability but also performance specifications of power systems. A new practical and
simple design based on static output feedback is proposed. The design guarantees robust pole-clustering
in an acceptable region in the complex plane for a wide range of operating conditions. A power system
design model is approximated by a set of Takagi–Sugeno (T–S) fuzzy models to account for nonlinearities,
uncertainties and large scale power systems. The proposed PSS design is based on parallel distributed
compensation (PDC). Sufficient design conditions are derived as linear matrix inequalities (LMI). The
design procedure leads to a tractable convex optimization problem in terms of the stabilizer gain matrix.
Simulations results of both single-machine and multi-machine power systems confirm the effectiveness
of the proposed PSS design.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

POWER system stabilizers (PSSs) have been used by utilities to
damp out the electro-mechanical oscillations that follow distur-
bances (DeMello & Concordia, 1969; Kundur, 1994). Disturbances
occur in power systems due to several reasons, e.g. continuous load
variations, set-point changes and faults. In such cases, a fixed-
parameter conventional PSS may fail to maintain stability or lead
to a degraded performance (Klein, Rogers, Moorty, & Kundur,
1992; Larsen & Swann, 1981). Different design techniques such
as adaptive control (Ghosh, Ledwich, Malik, & Hope, 1984; Sastry
& Bodson, 1989) and robust control (Klein, Le, Rogers, Farrokhpay,
& Balu, 1995; Samarasighe & Pahalawaththa, 1997) have been pro-
posed to enhance the performance of PSSs. The implementation of
an adaptive controller needs tough precautions to assure persistent
excitation conditions and performance during the learning phase
(Sastry & Bodson, 1989).

Recently, fuzzy logic has emerged as a potential technique for
PSS design. Besides its ability to accommodate the heuristic knowl-
edge of a human expert, the advantage of a fuzzy PSS is that it rep-
resents a nonlinear mapping that can cope with the nonlinear
nature of power systems. Several reported results confirm that a
fuzzy PSS outperforms a conventional PSS once the deviation from
the nominal design conditions becomes significant (Malik &
El-Metwally, 1998). Implementation of a fuzzy PSS for a multi-

machine power system is reported in El-Metwally and Malik
(1996). Tuning the scaling factors of a fuzzy PSS is discussed in
El-Metwally and Malik (1993). An adaptive PSS using on-line
self-learning fuzzy systems is discussed in Elshafei, El-Metwally,
and Shaltout (2005) and on-line tuning of fuzzy PSSs as a direct
adaptive one is reported in Abdelazim and Malik (2003). Although
the performance of a well-designed model-free fuzzy PSS is accept-
able, it lacks systematic stability analysis and controller synthesis.
The reported work attempts to overcome this drawback by a pro-
viding a model-based fuzzy PSS that guarantees stability and per-
formance of power systems. In the past ten years, research efforts
on fuzzy logic control have been devoted to model-based fuzzy
control systems (Feng, 2006). Stability and performance limits of
model-based fuzzy control systems can be achieved via linear ma-
trix inequality (LMI) techniques (Tanaka & Wang, 2001).

LMI techniques are proposed as design tools of robust PSS in
Befekadu and Erlich (2006); Rao and Sen (2000); Ramos, Alberto,
and Bretas (2003); Werner, Korba, and Chen Yang (2003). In Wer-
ner et al. (2003), the authors represent the model uncertainty as a
linear fractional transformation. An output feedback PSS is de-
signed to guarantee stability for all admissible plants such that a
quadratic performance index, based on the nominal plant, is min-
imized. In Rao and Sen (2000), pole clustering is used to design a
full state feedback for a multi-machine power system. In Ramos
et al. (2003), a combination of LMI and feedback linearization tech-
niques is used to design a centralized PSS for a two-area power sys-
tem. In Befekadu and Erlich (2006), a robust decentralized PSS is
derived by minimizing a linear objective function under LMI and
bilinear matrix inequality (BMI) constraints.
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In this work, an LMI design of a model-based fuzzy static PSS is
proposed. The design guarantees robust pole-clustering in a pre-
specified LMI region. The LMI region is selected such that common
specifications of power system stabilization are achieved. This in-
cludes adequate damping and acceptable speed of the time re-
sponse over wide ranges of active power (P), reactive power (Q)
and tie-line reactance (Xe). These ranges are selected to include
all practical loading conditions and very weak to very strong trans-
mission networks. A power system design model is approximated
by a polytopic Takagi–Sugeno (T–S) fuzzy model. Each fuzzy rule
(vertex) of the T–S model (polytope) represents an extreme operat-
ing point corresponding to the selected ranges. According to the
universal approximation theorem (Tanaka & Wang, 2001), the
resulting fuzzy model can approximate the original nonlinear sys-
tem to an arbitrary degree of accuracy. A stabilizer design is carried
out at each vertex of the polytope. The designs are derived under
global stability and performance conditions using a common
Lyapunov function. The design leads to a set of LMIs. The solution
of this set of LMIs yields a common positive definite matrix that is
used to calculate the stabilizer gains. The total control signal is cal-
culated using a PDC control law (Wang, Tanaka, & Griffin, 1995).

Up to our knowledge, application of a model-based fuzzy con-
trol in PSS design, as proposed here, is a novel approach. Model-
based fuzzy control system allows us to use an imprecise design
model (Sugeno, 1999; Sugeno & Kang, 1986; Takagi & Sugeno,
1985). It also enables a decentralized design approach that is inde-
pendent of the power system size as indicated in the next sections.
Furthermore, model-based design relies on LMIs rather than bilin-
ear matrix inequalities (BMIs) to have a tractable solution.

This paper lies in seven sections. Section 2 describes how to rep-
resent an uncertain power system that allows a wide range of
operating conditions. In Section 3, a brief review of T–S models is
depicted followed by the model to be used for PSS design. In Sec-
tion 4, the LMI conditions that correspond to robust pole clustering
are recalled. Consequently, the sufficient conditions required to
calculate the fuzzy observer and stabilizer gains are derived in Sec-
tion 5. In Section 6, simulation results illustrate the merits of our
proposed design. A single-machine model is used first to clarify
the design steps. Then, a bench mark model of a 4-machine 2-area
test system is utilized to compare the proposed PSS to a well-de-
signed conventional PSS. Section VII concludes this work.

2. Deriving the T–S fuzzy model for the proposed PSS design

2.1. A review of T–S fuzzy models and PDC

A T–S fuzzy model (Takagi & Sugeno, 1985), also called type-III
fuzzy model by Sugeno (1999), is in fact a fuzzy dynamic model
(Cao, Rees, & Feng, 1995, 1997, 1997). This model is based on using

a set of fuzzy rules to describe a global nonlinear system by a set of
local linear models which are smoothly connected by fuzzy mem-
bership functions. T–S fuzzy models include two kinds of knowl-
edge: one is qualitative knowledge represented by fuzzy IF-Then
rules, and the other is a quantitative knowledge represented by lo-
cal linear models. Identification of T–S fuzzy models has been
extensively addressed in literature, e.g. Takagi and Sugeno
(1985), Sugeno and Kang (1986), Cao, Rees, and Feng (1997) Johan-
sen, Shorten, and Murray-Smith (2000). There are basically two
classes of algorithms to identify T–S fuzzy models. The first is to
linearize the original nonlinear system in a number of operating
points when the model is known. This is adopted in this study.
The second is based on the data gathered from the nonlinear sys-
tem when the model is unknown. The ith rule of a T–S fuzzy model
is written as follows:

Model Rule i:

IF z1ðtÞ is Mi
1 AND . . . AND znðtÞ is Mi

n

THEN x
�
ðtÞ ¼ AixðtÞ þ BiuðtÞ

yðtÞ ¼ CixðtÞ

Mi
j; j ¼ 1;2; . . . ; n; is the jth fuzzy set of the ith rule and z1(t), . . .,

zn(t) are known premise variables that may be functions of state
variables, external disturbances, and/or time. Let li

jðzjÞ be the
membership function of the fuzzy set Mi

j and let

hi ¼ hiðtÞ ¼ Pn
j¼1l

i
jðzjÞ

Given a pair (z(t),u(t)), the resulting fuzzy system is inferred as the
weighted average of the local models and has the following form

x
�
¼
Pr
i¼1

hi AixðtÞ þ BiuðtÞf g=
Pr
i¼1

hi ¼
Pr
i¼1

ai AixðtÞ þ BiuðtÞf g

y ¼
Pr
i¼1

aiCixðtÞ
ð1Þ

where,ai ¼ hi=
Pr

i¼1hi;0 6 ai 6 1;
Pr

i¼1ai ¼ 1, for i = 1,2, . . . ,r.
The PDC offers a procedure to design a fuzzy controller from a

given T–S fuzzy model (Wang et al., 1995; Tanaka & Sugeno,
1992). In the PDC design, each control rule is associated with the
corresponding rule of a T–S fuzzy model. The designed fuzzy con-
troller shares the same fuzzy sets with the fuzzy model in the pre-
mise parts. For a T–S fuzzy model as described in (1), the following
state feedback fuzzy controller is constructed via PDC as follows:

Model Rule # i:

IF z1ðtÞ is Mi
1 AND . . . AND znðtÞ is Mi

n

THEN uðtÞ ¼ FixðtÞ; i ¼ 1;2; . . . ; r

The fuzzy control rules have a linear controller in the consequent
parts and the overall fuzzy controller is represented by

Nomenclature

Vt terminal voltage
Eq induced EMF proportional to field current
Efd generator field voltage
Vref the reference voltage
xe equivalent tie-line reactance
x0d,xd,xq generator direct-axis transient reactance, direct and

quadrature synchronous reactances
d angle between q-axis and infinite bus bar
Id,Iq direct and quadrature stator currents
Dx speed deviation
xo synchronous speed (rad/s)
Te,Tm electrical torque and mechanical torque

T 0d0 open-circuit d-axis transient time constant
M inertia coefficient in seconds
KE,TE exciter gain and time constant
V1 infinite bus bar voltage
P,Q active and reactive power loading, respectively
s, C Complex operator and complex plane respectively
� Kronecker product
X > 0,X P 0 positive definite and positive semi-definite respec-

tively
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uðtÞ ¼
Xr

i¼1

hiFixðtÞ=
Xr

i¼1

hi ¼
Xr

i¼1

aiFixðtÞ ð2Þ

Although the fuzzy controller (2) is constructed using local design
structures, the feedback gains must be determined using global de-
sign conditions to guarantee global stability and performance. The
methods for stability analysis and control design of T–S fuzzy sys-
tems are classified into different categories as reported in Feng
(2006). The analysis adopted in this paper requires that a common
quadratic Lyapunov function can be found for all the local subsys-
tems in a T–S fuzzy model (Akar & Ozguner, 2000; Akhenak, Chadli,
& Ragot, 2004; Bergsten, Palm, & Driankov, 2002; Chadli, Maquin, &
and Ragot, 2004; Kang, Lee, & Pusan, 1998; Tanaka & Sugeno, 1992;
Tanaka & Wang, 1997; Tanaka, Ikeda, & Wang, 1998).

Substituting (2) in (1), the augmented system is given by

x
�
¼
Xr

i¼1

Xr

j¼1

aiajfAi þ BiFjgxðtÞ

Denoting Gij = Ai + BiFj,

x
�
¼
Xr

i¼1

a2
i GiixðtÞ þ 2

Xr

i¼1

Xr

i<j

aiaj
Gij þ Gji

2

� �
xðtÞ ð3Þ

Theorem 1. the T–S fuzzy model (3) is globally asymptotically stable
if there exists a common positive definite matrix X such that

GT
iiX þ XGii < 0; i ¼ 1;2; . . . ; r ð4Þ
Gij þ Gji

2

� �T

X þ X
Gij þ Gji

2

� �
6 0; i < j; ai \ aj–u ð5Þ

Proof. see Tanaka and Wang (2001). h

Corollary 1. Assume that Bi = B,i = 1,2, . . . ,r, the equilibrium of the
fuzzy control system (3) is globally quadratically stable if a common
positive definite matrix P exists and satisfies (4) only. This follows
directly because definite negativity of (4) implies semi-definite nega-
tivity of (5) in case of common B (Tanaka & Wang, 2001).

2.2. Power system uncertainties

Power systems consist mainly of a set of generating units, a
transmission network and loads. These units interact with each
other through active and reactive power generation (P,Q) over
the transmission network. Briefly, any power system is composed
of a set of inherently interacting subsystems, where each subsys-
tem consists of a generating-unit connected to the rest of the sys-
tem by a tie line whose reactance is the Thevenin’s reactance at the
terminal bus (Xe = XTh). For modeling and design approaches pro-
posed in this work, a subsystem is considerably approximated by
a single-machine connected to an infinite system. This assumption
is made possible because fuzzy modeling allows imprecision
(Sugeno, 1999; Sugeno & Kang, 1986; Takagi & Sugeno, 1985). As

a result of this approximation, each generator can be decoupled
from the entire system. The influence of the rest of the system will
be taken care of by the scheduling variables; namely its real and
reactive powers (P,Q) and an equivalent tie line reactance (Xe).
All possible dynamics at the interface between a generator and
the rest of the system are supposed to be reflected by this set of
scheduling variables (P,Q,Xe). This decoupling leads to a decentral-
ized design.

The origin of power systems uncertainties are the continuous
variations in load patterns and transmission network. Since the
system is to be linearized around the equilibrium point, it follows
that a different system triple (A,B,C) is obtained for each operating
point. It is assumed that the set of variables (P,Q,Xe) of certain sub-
system varies independently over the following ranges: P 2

P
�

P
þ

h i
, Q 2 Q

�
Q
þ

h i
Xe 2 Xe

�
Xe

þ
h i

. These ranges are selected
to encompass all practical operating points and very weak to very
strong transmission networks. Possible combinations of minimum
and maximum values of these variables result in eight operating
points corresponding to the vertices of a cuboid in the (P,Q,Xe)
space. Consequently, a set of matrices obtained from an operating
point can be represented by (A,B,C) 2X, where:

X ¼ ðA;B;CÞ : ðA; B;CÞ ¼
X8

i¼1

aiðAi; Bi;CiÞ;ai P 0;
X8

i¼1

ai ¼ 1

( )
ð6Þ

The set X describes a polytope with eight vertices (Ai,Bi,Ci),
i = 1,2,. . .,8 calculated at ½P

�
;Q
�
;Xe

�
�; P
�
;Q
�
;Xe

þ
� �

, . . ., P
þ
;Q
þ
;Xe

þ
� �

respec-

tively. Changes in load and system topology or most of system
parameters lead to uncertainties in the state-matrix A. Uncertain-
ties in the input matrix B can only be caused by parametric varia-
tions in the excitation system and are not taken into account in
this work. Rotor speed deviation is selected as the measured output
and then no uncertainties appear in matrix C.

2.3. Dynamic T–S Fuzzy Model

Each vertex system in the polytope (6) corresponds to a model
rule in a T–S fuzzy system which is stated as follows.

Model Rule 1:

IF ðP is about P
�
ÞANDðQ is about Q

�
ÞANDðXe is about Xe

�
Þ

THEN x
�

y

" #
¼

A1 B

C 0

� �
x

u

� �

Model Rule 2:

IF ðP is about P
�
ÞANDðQ is about Q

�
ÞANDðXe is about Xe

þ
Þ

THEN x
�

y

" #
¼

A8 B

C 0

� �
x

u

� �

; . . . ;

1 

P
+

P

+

P

),,(1 PPPL
+

),,(2 PPPL
+

P

- -

-

-

Fig. 1. Membership functions for scheduling variable P.
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Model Rule 8:

IF ðP is about P
þ
ÞANDðQ is about Q

þ
ÞANDðXe is about Xe

þ
Þ

THEN x
�

y

" #
¼

A8 B

C 0

� �
x

u

� �

The resulting fuzzy system is inferred as the weighted average of
the local models and has the form

x
�

y

" #
¼

P8
i¼1

aiAi

� �
B

C 0

2
64

3
75 x

u

� �
ð7Þ

Any value P 2 P
�

P
þ

h i
can be expressed as P ¼ L1ðP

�
; P
þ
; PÞ � P

�
þ

L2ðP
�
; P
þ
; PÞ � P

þ
, where L1ðP

�
; P
þ
; PÞ and L2ðP

�
; P
þ
; PÞ are membership func-

tions for the variable P such that L1ðP
�
; P
þ
; PÞ þ L2ðP

�
; P
þ
; PÞ ¼ 1, conse-

quently these membership functions can be calculated as:

L1ðP
�
; P
þ
; PÞ ¼ P

þ
�P

P
þ
� P
� ; L2ðP

�
; P
þ
; PÞ ¼ P � P

�

P
þ
� P
� ð8Þ

The membership functions L1ðP
�
; P
þ
; PÞ and L2ðP

�
; P
þ
; PÞ are labeled ‘‘P

�
”

and ‘‘P
þ

” respectively. Fig. 1 shows the membership functions for
the variable P. In a similar manner, membership functions for Q
and Xe are defined and labeled M1,M2 and N1,N2 respectively. The
weights are calculated as h1 = L1M1N1,h2 = L1M1N2,h3 = L1M2N1, . . . ,
and h8 = L2M2N2.

Remark 1. In the proposed modeling approach, it should be
noticed that a single-machine subsystem is approximated by a
separate T–S fuzzy model. As result of this approach, a multi-
machine power system could be decomposed into a set of T–S
fuzzy models that allow for a decentralized design. Interactions
between different T–S fuzzy models are guaranteed by a set of
scheduling variables (P,Q,Xe) that appear in the premise parts of a
model. The sets of different models vary simultaneously and
dependently via the network.

3. Representing power system specifications as an LMI Region

In power systems, a damping ratio of at least 10% and a real part
not greater than �0.5 guarantees better damping characteristics
for low frequency oscillations (Rao & Sen, 2000). These transient
response specifications can be satisfied by clustering the closed
loop poles in the admissible region shown in Fig. 2. This ensures
a minimum decay rate aR and a minimum damping fmin = cos(h/

R
L

Re(s)

Im(s)

Admissible 
Pole Region

Region 2 

Region 3 
Region 1 

α
α

θ

Fig. 2. LMI region: region-1 guarantees an upper bound on the settling time,
region-2 guarantees sufficient damping of the system and region-3 prevent
controller gains from being excessively large.
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Fig. 3. Schematic diagram for the proposed stabilizer on Gen # i.
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2). This in turn bounds the maximum overshoot and the settling
time of the closed loop system. To avoid very large feedback gains,
the real part of the poles should be placed to the right of the aL line.

The admissible region is expressed as an LMI region defined by
three individual LMI regions as shown in Fig. 2. The intersection of
the LMI regions results in another LMI region. An LMI region is any
subset Dof the complex plane defined by Chilali, Gahinet, and Apk-
arian (1999) as follows:

D ¼ fs 2 C : Uþ sWþ s
�
WT < 0g ð9Þ

where, U and W are real matrices and U = UT. The region matrices
U and W are calculated from the values of aR, aL and h as clarified in
Chilali et al. (1999); Chilali and Gahinet (1996). An LMI condition

for D-stability of a closed loop system with state matrix Acl is given
by the following lemma.

Lemma 1 (Chilali et al., 1999). The matrix Acl is D-stable if and only
if there exists a symmetric, positive definite matrix X such that

U� X þW� ðXAclÞ þWT � ðXAclÞT < 0 ð10Þ

Proof. see Chilali et al. (1999) and Chilali and Gahinet (1996). h

4. Synthesis of a Fuzzy Static Output-Feedback PSS

Typically, a PSS has the speed deviation as a feedback signal. In
such case, attention is oriented towards output feedback design
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methods. This section studies the design of a static output-feed-
back PSS for power systems described by continuous T–S fuzzy
models. Generally the problem of a static output feedback leads
to a BMI which is non-convex. Many papers addressed this prob-
lem and present iterative LMI techniques to solve this problem,
e.g. Cao, Lam, and Suns (1998), He and Wang (2006), Fujimori
(2004), Yu (2004) and Haung and Nguang (2006). The authors of
Crusius and Trofino (1999) and Chadli et al. (2002) present a solu-
tion for the static output feedback via an equality constraint. A fuz-

zy static output-feedback PSS shares the same fuzzy sets with the
fuzzy model as follows:

uðtÞ ¼
Xr

i¼1

aiFiyðtÞ ¼
Xr

i¼1

Xr

j¼1

aiajfFiCjxðtÞg ð11Þ

where Fi are the local static output-feedback gains to be deter-
mined. By substituting (11) in T–S model (1), we obtain,

x
�
¼
Xr

i¼1

Xr

j¼1

Xr

‘¼1

aiaja‘fAi þ BiFjC‘gxðtÞ ð12Þ

For the case of power systems, Bi = B,C‘ = C, i,‘ = 1,2, . . . ,r, then (12)
can be rewritten as follows:

x
�
¼
Xr

i¼1

aifAi þ BFiCgxðtÞ ð13Þ

The following theorem gives sufficient conditions in LMI form to en-
sure D-stability of (13).

Theorem 2. Let Fi = Ni M�1, the eigenvalues of (13) lie in the LMI
region (9) if there exist matrices R,M,Ni, i = 1,2, . . . ,r such that the
following LMIs hold.
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Fig. 9. System response due to three phase short circuit at the middle of one tie line cleared after 0.133 s. (a–d) Rotors speed (pu) for m/cs: 1–4 respectively [– – – CPSS, ——–
proposed stabilizer SOFPSS]. (e) Relative rotor angle (deg) between m/c-1 and m/c-4 [– – – CPSS, ——– proposed stabilizer SOFPSS]. (f) tie line power (MW) from area-1 to
area-2 [– – – CPSS, ——– proposed stabilizer SOFPSS].
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R > 0 ð14:aÞ
U� RþW� ðAiRþ BNiCÞ þWT � ðAiRþ BNiCÞT < 0; i ¼ 1;2; . . . ; r

ð14:bÞ
MC ¼ CR ð14:cÞ

Proof. Substituting (13) in (10), we get

U� X þW� ðXfAi þ BFiCgÞ þWT � ðXfAi þ BFiCgÞT < 0 ð15Þ

Performing conguerence transformation with (I � X�1) on (15) leads
to

U� X�1 þW� ðAiX
�1 þ BFiCX�1Þ þWT � ðAiX

�1 þ BFiCX�1ÞT < 0

Substituting X�1 = R,CR = MC and FiM = Ni leads to LMIs (13). h

Remark 2. Since the matrix C is full row-rank as the case studied
herein, we can deduce from (14.c) that there exists a non-singular
matrix M = CRCT(CCT)�1.

The design steps can be summarized as follows:

(i) Determine the ranges P 2 P
�

P
þ

h i
, Q 2 Q

�
Q
þ

h i
and Xe 2

Xe

�
Xe

þ
h i

that encompass all practical operating conditions.

(ii) Define the eight local models of the polytope (6) by calculat-
ing A1,A2, . . . ,A8, B and C.

(iii) Define the membership functions as given by (8) according
to the ranges of P,Q and Xe in (i).

(iv) Generate the T–S fuzzy system (7).
(v) Define aR,aL and h. Then, compute the LMI region matrices U

and win (9) as clarified in Chilali et al. (1999).
(vi) Solve the optimization problem in (14) to get the static gains

of the stabilizerFi,i = 1,2, . . . ,8 using an appropriate LMI sol-
ver, e.g. (Gahinet, Nemirovski, Laub, & Chilali, 1995).

(vii) Impalement the control law given by (11) as illustrated in
Fig. 3.

5. Design validation and simulation results

The proposed PSS design is validated in this section based on two
different nonlinear models. The first model is a single-machine infi-
nite-bus model which is used to illustrate the design steps. The sec-
ond model is a four-machine two-area system which is used as a
benchmark problem in the literature. In applying our design algo-
rithm to the multi-machine system, each machine is considered as
a single machine connected to an infinite bus by a tie line. The effect
of the rest of the system is reflected on the calculation of the line
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Fig. 10. System response due to three phase short circuit at the middle of one tie line cleared after 0.133 s. (a–d) Rotors speed (pu) for m/cs: 1–4 respectively [– – – CPSS, ——–
proposed stabilizer SOFPSS]. (e) Relative rotor angle (deg) between m/c-1 and m/c-4 [– – – CPSS, ——– proposed stabilizer SOFPSS]. (f) Tie line power (MW) from area-1 to
area-2 [– – – CPSS, ——– proposed stabilizer SOFPSS].
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reactance and the power delivered to the system. Consequently, a
PSS is designed independently for each machine. The implementa-
tion details for the proposed stabilizer are shown in Fig. 3.

5.1. The single-machine infinite-bus system

The study in this section will be carried on a single-machine
infinite-bus system whose model and data are given in Appendix
A.1 P and Q at the generator terminals and Xe are assumed to vary
independently over the following ranges provided that all points
included have a steady state load flow solution: P 2 [0.4 1.0],
Q 2 [�0.2 0.5] and Xe 2 [0.2 0.4]. Fig. 4a shows the dominant open
loop poles for 1000 plants as P,Q and Xe vary over their specified
ranges. It is noted that, most of the plants in this polytope do not
have adequate damping and some plants are unstable. The pro-
posed design is carried out for an LMI region bounded by
aL = �1000, aR = �0.5 and h = 168�. The matrices U and w of the
LMI region are computed and listed in Appendix A.2. The optimiza-
tion problem (14) is solved to calculate the static feedback gains Fi.
The resulting values of the stabilizer gains are listed in Appendix
A.3. Fig. 4b shows the efficacy of the proposed design in clustering
the system roots in the pre-defined LMI region. The time response
of three operating conditions is studied and depicted in Fig. 5–7.
The CPSS for the same unit is given in Klein et al. (1992) and
adopted for comparison. It is obvious that the proposed design out-
performs the conventional PSS even at the nominal point. The con-
ventional design fails to maintain stability at full load with leading
power factor as shown in Fig. 6 and fails for the case of overload
with unity power factor as shown in Fig. 7 as well.

5.2. Decentralized application in a multi-machine power system

The benchmark two-area model shown in Fig. 8 is adopted for
simulation studies. The test system consists of two fully symmet-
rical areas linked together by two 230 KV lines of 220 Km length.
It is specifically designed in Kundur (1994) to study low frequency
electromechanical oscillations in large interconnected power sys-
tems. Each area is equipped with two identical round rotor gener-
ators rated 20 KV/900 MVA. The synchronous machines have
identical parameters except for the inertias which are H = 6.5 s
in area 1 and H = 6.175 s in area 2. Thermal plants having identical
speed regulators are further assumed at all locations, in addition to
fast static exciter with a gain of 200. Each generator is represented
by a 7th order model. The loads are represented as constant imped-
ances and spilt between the areas. Each generator is equipped with
a conventional PSS as designed in Kundur (1994) and Klein et al.

(1992) for the same test system. A general procedure to separately
design a PSS for each generator includes the following steps:

(i) The load flow study is carried out for different loading con-
ditions that may be encountered during the power system
operation to obtain the ranges Pi 2 Pi

�
Pi

þ
h i

and
Q i 2 Q i

�
Q i

þ
h i

for different generators, where i = 1, 2,. . ., n
and n is the generator index.

(ii) For different network topologies (normal and contingency
conditions are assumed), the bus impedance matrix is calcu-
lated, and different self impedances are determined at the
generator buses to get Xi 2 Xi

�
Xi

þ
h i

, where i = 1, 2,. . ., n

and n is the generator index.
(iii) Once all ranges are determined, the steps described in Sec-

tion 5 are used to find a T–S fuzzy observer/stabilizer for
each generator separately.

The proposed PSS is compared to the conventional stabilizer at
two test points. For fair comparison, all simulation results consider
saturation limits of ±0.15 pu on the control signals provided either
by CPSS or by the proposed stabilizer. Fig. 9 depicts the system re-
sponse due to a three-phase short circuit at bus-8 when the nom-
inal tie line power is transferred from area-1 to area-2. The fault is
cleared after 0.133 s by opening the two breakers at the ends of the
faulty line causing one tie-line separation. It is clear that the pro-
posed PSS outperforms CPSS even at the nominal point. If the same
fault occurs at larger tie line power, the conventional design fails to
maintain system stability, however the proposed PSS gives accept-
able damping characteristics as shown in Fig. 10. The control sig-
nals of this case provided by the proposed stabilizers to the four
machines are depicted in Fig. 11.

6. Conclusion

A design of a power system stabilizer that can cope with a wide
range of loading conditions and external disturbances has been the
objective of the power industry. This paper has provided a step to-
wards this goal. One of the contributions here has been to show
that the nonlinear model of a power system can be systematically
represented in the form of a T–S fuzzy system. This has allowed us
to use an approximate design model of the power system to devel-
op a stabilizer that copes with different operating conditions and
disturbances. Since the fuzzy model is a polytopic system, the pro-
posed design assures stability and performance for all operating
points within the polytope.

A static output-feedback fuzzy PSS that guarantees robust pole-
placement in an LMI region has been designed. The design condi-
tions have been derived via an LMI approach. Simulation results
of a 4-machine 2-area power system have confirmed the superior-
ity of the proposed algorithm in damping the post-fault inter-area
oscillations. Compared to a well-tuned conventional PSS, it has
been shown that the proposed PSS has a superior capability to cope
with larger tie-line power.

Appendix A

A.1. Machine data and model adopted for SMIBB simulation

xd ¼ 1:8; x0d ¼ 0:3; xq ¼ 1:7; T 0do ¼ 8; M ¼ 13; xo ¼ 377;
V1 ¼ 1:0
KA ¼ 200; TA ¼ 0:001; xe 2 0:2 0:4½ �

d
�
¼xox

x
�
¼ ðTm � E0qIq � ðxq � x0dÞIdIqÞ=M;
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Fig. 11. The control signal (pu) of four machines provided by the proposed design
SOFPSS.
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E0q
�
¼ ð�E0q � ðxd � x0dÞId þ EfdÞ=T 0do

Efd

�
¼ KE

TE
ðVref �VT þ upssÞ �

1
TE

Efd

where VT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

d þV2
q

q
: Vd ¼�XeIq þV1 sind;Vq ¼ XeId þV1 cosd

A.2. The matrices of the LMI Region

U ¼

1 0 0 0
0 �2000 0 0
0 0 0 0
0 0 0 0

2
6664

3
7775; w ¼

1 0 0 0
0 �1 0 0
0 0 0:99452 �0:10453
0 0 0:10453 0:99452

2
6664

3
7775

A.3. The static output-feedback gains

F ¼

40:895
38:738
35:542
40:319
47:211
38:610
48:256
45:479

2
66666666666664

3
77777777777775
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